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Abstract  

Background: Epidemics of meningococcal meningitis are concentrated in sub-Saharan Africa 

during the dry season, a period when the region is affected by the Harmattan, a dry and dusty 

northeasterly trade wind blowing from the Sahara into the Gulf of Guinea. 

Objectives: We examined the potential of climate-based statistical forecasting models to predict 

seasonal incidence of meningitis in Niger at both the national and district levels. 

Data and methods: We used time series of meningitis incidence from 1986 to 2006 for 38 

districts in Niger. We tested models based on data that would be readily available in an 

operational framework, such as climate and dust, population, and the incidence of early cases 

prior to the onset of the meningitis season in January-May. Incidence was used as a proxy for 

immunological state, susceptibility and carriage in the population. We compared a range of 

negative binomial generalized linear models fitted to the meningitis data. 

Results: At the national level, a model using early incidence in December and averaged 

November-December zonal wind provided the best fit (pseudo-R2 = 0.57), with zonal wind 

having the greatest impact. A model with surface dust concentration as a predictive variable 

performed indistinguishably well. At the district level, the best spatio-temporal model included 

zonal wind, dust concentration, early incidence in December, and population density (pseudo-R2 

= 0.41). 

Conclusions: We showed that wind and dust information, and incidence in the early dry season 

predict part of the year-to-year variability of the seasonal incidence of meningitis at both national 

and district levels in Niger. Models of this form could provide an early-season alert that wind, 

dust and other conditions are potentially conducive to an epidemic. 
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Introduction  

The meningitis belt in sub-Saharan Africa is the region where the majority of epidemics of 

meningococcal meningitis occur and which suffers the greatest burden of endemic disease 

(Molesworth et al. 2002). Meningitis is an infection of the thin lining that surrounds the brain 

and spinal cord. While there are many causes of meningitis, the epidemic form of the disease is 

caused by the bacteria Neisseria meningitidis. Human carriers transmit the bacteria through 

respiratory droplets or throat secretions. Under certain circumstances the bacteria become 

pathogenic, invading the naso-pharageal epithelial cells and entering the blood stream, thus 

instigating disease. Epidemics in the meningitis belt are caused by serogroups A, C, X and 

W135, with serogroup A meningococcus accounting for an estimated 80-85 % of all cases. 

Epidemic control and response has been based on reactive mass vaccination with meningococcal 

polysaccharide (PS) vaccines and effective case management. The deployment of PS is usually 

based on early detection of epidemics through the effective application of alert and epidemic 

thresholds as recommended by the World Health Organization (WHO 2000). Consequently, the 

impact of the vaccination response largely depends on the quality and timeliness of the 

surveillance system, and would benefit from forecasting tools. 

Epidemics and seasonal upsurges in endemic disease occur in the latter part of the dry season 

after the onset of the Harmattan—a ground level stream of dry and dusty desert air, which is part 

of the African continental trade wind system that sweeps southwestward between the end of 

November and the middle of March—and usually subside at the onset of the rains (Lapeysonnie 

1963; Molesworth et al. 2002). The location and seasonality of meningitis epidemics suggest that 

environmental factors, such as low absolute and relative humidity, high temperatures, and dusty 
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atmospheric  conditions  may play an important  role  (e.g., Agier et  al. 2013;  Cheesbrough et  al. 

1995;  Dukić  et  al. 2012;  Martiny and Chiapello 2013;  Sultan et  al. 2005).  It  also has  been 

suggested that  climate  conditions  may contribute  to the  year-to-year variation in the  incidence  of  

meningitis in specific locations  (Thomson et al. 2006; Yaka et al. 2008).  

The  mechanism  by which climate  and dust  may influence  meningitis  occurrence  along with 

epidemic  location and intensity remains  unclear. While  the  mechanisms  of  the  interaction 

between N. meningitidis  and the  mucosal  epithelial  cells  are  well  known (van Deuren et  al. 

2000), to our knowledge, there  are  no in vivo  studies  of  the  effects  of  climate  and dust  on the  

pathogenesis  and  transmission  of  N.  meningitidis  (Palmgren 2009). The most common proposed 

mechanism  has  been that  physical  damage  to the  epithelial  cells  lining the  nose  and throat  in dry 

and dusty conditions  permits  an easy passage  of  the  bacteria  into the  blood stream  causing 

invasive  disease. Other more  controversial  mechanisms  involve  potential  effects  of  dust  particles  

on the  fluid dynamics  of  airborne  bacteria  transmission, the  potential  impact  of  climate  (high 

dust  levels, low  humidity, and cold nights) on preceding viral  infections  that  may increase  

susceptibility, effects  of  iron in dust  particles  on the  activation of  the  meningococci, and effects  

of  high dust  levels  on human behavior, including crowding and reduced ventilation (e.g. 

blocking windows) (Thomson et al. 2009).   

Factors  other than climate  conditions  such as  herd  (i.e. population) and natural  immunity levels,  

vaccination type  and coverage, serogroup type, new  strains, clonal  virulence,  and coincident  

respiratory infections  are  likely to contribute  to the  temporal  and spatial  variation in meningitis  

epidemics  (e.g., Mueller et  al.  2010).  However, despite  progress  in surveillance  and research, 

5
 



  

efforts  to predict  epidemics  have  been hindered by an incomplete  understanding of  meningitis  

epidemic patterns and a lack of data (Moore 1992).   

In this  study we  extended the  work of  Yaka  et  al. (2008) at  national  level  in Niger by testing 

seasonal  forecast  models  based on climate  and dust  information  along with  other determinants  at  

both national  and district  levels  using  data  that  would be  readily available  in an operational  

framework. We analyzed  and compared a  range  of  negative  binomial  generalized linear models  

that were fitted to the meningitis data.  

Data and methods  

Epidemiological data: early and seasonal cases  

We  used the  number of  weekly suspected cases  compiled by the  Multidisease  Surveillance  

Center (MDSC) based on information provided by the  Ministry of  Public  Health in Niger  for 38 

districts  as  defined prior to 2002. The period used in this   study was  1986-2006. The reported data    

include  all  suspected cases  of  acute  meningitis, according to the  standard clinical  diagnosis  by  

WHO  (WHO  1998):  a  sudden onset  of  fever (>38.5°C rectal  or 38.0°C axillary) and one  or more  

of  the  following signs:  stiff  neck, altered consciousness  or other meningeal  sign. In patients  

under one  year of  age, a  suspected case  occurs  when fever is  accompanied by  a  bulging 

fontanelle. Suspected cases  may include  meningitis  caused by Streptococcus  pneumonia  and 

Haemophius  Influenzae  b. However, N.  meningitidis  is  the  only pathogen associated with 

epidemics  of  meningitis.  Average  population density per district  was  calculated by dividing the  

district population in each year by the district area.   

We modeled  the  seasonal  number of  cases  (counts),  which we  defined as cases  reported  from  

January through  May  (the  meningitis  season). Weekly data  for this  period were  aggregated at  
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both national  and district  levels for each  year. We  examined  whether climate  conditions  prior to 

January, including dust  concentration, could be  used to predict  the  meningitis  incidence  during  

January through  May. There  is  a  lack of  historical  and  spatially resolved data  on predictors  

related to population immunity, such as  carriage  prevalence, seroprevalence, vaccination 

coverage, and introduction of  new  clones. Therefore, we  used the  early incidence  (i.e., cases  per 

100,000 population diagnosed in December) as  a  proxy measure  of  population carriage  and/or 

susceptibility.  De  Chabalier et  al. (2000) reported that  major epidemics  in Niger often showed 

higher incidence early in the season than minor epidemics.  

Climate and dust model data  

The atmospheric and dust data used in this study were derived using the recently developed 

online regional atmospheric dust model NMMB/BSC-Dust (Pérez et al. 2011), which simulates 

soil dust aerosol emission, transport within the atmosphere, and deposition. The resolution of the 

model was set to 1◦ x 1◦ and the simulation covered 1986-2006, coincident with the MDSC 

epidemiological data. The simulation was initialized every 24 hours and the boundary conditions 

were taken from the global National Centers for Environmental Prediction Reanalysis-I (Kistler 

et al. 2001) for pressure level data, and from the Global Land Data Assimilation System II 

database (Rodell at al. 2004) for soil moisture and temperature. We used surface dust 

concentration estimates from a model given the paucity of direct in-situ measurements especially 

at district level. The soil dust aerosol component of the model was thoroughly evaluated with 

existing satellite and in-situ data over the region of interest (Ceccato et al. 2013; Pérez et al. 

2011), showing daily aerosol optical depth correlations around 0.6 (p<0.05). Additional details 

on the dust model and its suitability for the present study are provided in the Supplemental 

Material (see Supplemental Material, the NMMB/BSC-Dust model.) 
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We considered model  variables  that  characterize  the  Harmattan:  zonal  wind  [i.e. the  component  

of  the  horizontal  wind towards  east  (m/s)],  meridional  wind [i.e. the  component  of  the  horizontal  

wind towards  north (m/s)], wind speed (m/s),  humidity [specific  (kg/m3),  absolute  (kg/kg),  and 

relative  (%)], temperature  (K)  and  surface  dust  concentration  (µg/m3).  For wind, humidity,  and 

temperature  we  used outputs  at  the  pressure  level  of  925 hPa,  which were  consistent  with values  

close  to ground level  in Niger. For dust  concentration we  used the  particulate  matter fraction ≤  

10  µm in size at 10 m above ground level.    

For the  national  level, data  were  spatially averaged over the  region 0.1°  E  to 14.2°  E  longitude  

and 12.3°  N  to 17.3°  N  latitude,  which encompasses  southern Niger. The  northern  region of  

Niger was  excluded from  this  analysis, as  this  region is  scarcely populated due  to the  presence  of  

the Sahara desert, and few meningitis cases occur.  

We  considered climate  variables  averaged over a  range  of  consecutive  months  from  September 

through  December to explore  whether climate  and dust  conditions  leading up to January (before  

alert  and epidemic  thresholds  are  typically crossed)  could be  used to predict  the  extent  of  the  

following meningitis  season. We  applied an  ln-transform  to  the  climate  and dust  variables, so 

they  were  approximately normally distributed. As  the  monthly-averaged zonal  and meridional  

wind components  over the  period and region of  interest  were  negative  (the  Harmattan blows  

from  north to south and from  east  to west), the  absolute  value  of  these  variables  was  applied 

before  the  ln-transform.  For inclusion in our models, we  considered the  available  ln-transformed  

climate/dust  variables  with  the  largest  Pearson’s  correlation coefficients  with the  ln-transformed 

national  seasonal  meningitis  count  data:  temperature  from  September  through  December at  

925hPa  (TSD), average  zonal  wind from  November through  December at  925hPa  (UNDt),  average  
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meridional  wind from  November through December at  925 hPa  (VNDt), average  wind  speed  at  

925hPa  from  November  through  December  (UVNDt)  and  December  (UVDt),  and average  dust  

concentration from  September through  December (DustSDt) and from  October through  December 

(DustODt).  The  largest  correlation value  had  the  greatest  magnitude  of  all  the  statistically 

significant  (p<0.05) correlation coefficients  calculated for each climate  variable.  Interestingly, 

humidity prior to January did not show a significant correlation with the seasonal incidence.  

Modeling approach and evaluation criteria  

Under the assumption that the meningitis count data were overdispersed, we initially assumed 

that Yt, the number of cases observed in the January-May period of year t (where t = 

1986…2006) followed a negative binomial distribution, with mean parameter µt, overdispersion 

parameter θ, and variance σt = (µt + µt 
2)/θt (Lawless 1987). We determined the linear 

combination of risk factors that best represented the variability in the mean meningitis counts on 

the ln scale, ln(µt). Maximum likelihood techniques were used to fit each of the models using the 

statistical package R (version 2.14.1). 

  National-level models 

At  the  national  level  we  modeled the  seasonal  counts  Yt  using a  negative  binomial  distribution, 

and considered three  different  approaches  to model  the  mean,  µt. First,  we  tested to what  extent  

meningitis  incidence  prior to the  onset  of  the  disease  in January could explain the  seasonal  

incidence during January through    May  

ln(µt) = α  + βEt+ln(Nt),         [1]  
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where  Et  is  the  ln-transformed December incidence  and  Nt  is  the  national  population count  in 

meningitis-year  t. The second model was specified as  

K
ln(µt) = α  + Σk=1γkXkt  +ln(Nt),         [2]  

where  Xkt  are  the  k  selected ln-transformed climate  and dust  variables. Finally, we  used both  

climate/dust variables and December incidence as  

K
ln(µt) = α  +  βEt  + Σk=1γkXkt   +ln(Nt).         [3]  

A  key concept  of  our model  building and model  selection was  parsimony, i.e. our  goal  was  to 

build and select a  model  that  was  as simple  as  possible, while  still explaining a  significant  

amount  of  variability in the  data. We  used backwards-selection to determine  which of  the  

climate/dust  variables  to include  in the  final  national-level  models. All  of  the  shortlisted 

variables  were  included in an initial  full  model, and variables  that  did not  explain a  sufficient  

amount  of  variability in the  data  were  removed from  the  model  one  at  a  time. We  used likelihood 

ratio tests  (Vuong 1989) to determine  whether a  variable’s  contribution was  sufficient  or not  

(p<0.05),  in addition to testing for the  significance  of  the  overdispersion parameter.  The  final  

model  was  limited to variables  that  were  significant  predictors  of  seasonal  meningitis  incidence.  

To  evaluate  the  performance  of  each of  the  models, we  used comparison measures  and goodness-

of-fit  statistics  including  the  Akaike  Information Criterion (AIC),  the  pseudo-R2,  and the  

Pearson’s  correlation between the  observed data  and the  resulting cross-validated predictions  on 

the  ln-incidence  scale  (CVC). CVC estimates  were  derived by fitting the  model  to the  data  with 

one  year excluded and using the  fitted parameter estimates  to predict  the  excluded data. We  used 
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the  ‘deviance-based’ pseudo-R2  (Mittlbock and Waldhor 2000), which is  restricted to the  interval  

[0,1] and is interpreted as the amount of variability explained by the model.  

We  also analyzed each model’s  ability to detect  whether or not  a  particular incidence-based 

threshold had been exceeded,  such that if the fitted probability of  yt  exceeding a threshold  K  was 

greater than some value  c  (where 0 < c <1),  then we predict that  yt  >  K. To account for the case 

where  a  small  number of  years  had  a  large  influence  on the  fit  of  the  models, we  used the  cross-

validated predicted values  ~ yt  as  opposed to the  fitted time  series  y^ 
t  to  calculate  the  exceedance  

probabilities. We  assumed a  threshold  K  of  100 per 100,000 population (de  Chabalier et  al. 

2000), and for a  sequence  of  values  for c,  i.e. 51 evenly  spaced values  between 0 and 1 (0.02 

increments),  we calculated the  sensitivity [SENS  = true  positives  /  (true  positives  + false  

negatives)], specificity [SPEC  = true  negatives  /  (true  negatives  + false  positives)]  and the  scaled 

Hanssen and Kuipers  score  [HKS  = (SENS  + SPEC)/2, where  HKS  = 1 when the  model  

generates  perfect  predictions, and HKS  = 0.5 when the  model  performs  no better than random]. 

The  results  presented are  those  corresponding to the  value  of  c  that  minimized the  equation 

(1−SENS)2  +  (1−SPEC)2, i.e. the value of  c  that simultaneously maximized the SENS and SPEC 

of the model estimates.   

  District-level models 

At the district level we analyzed whether the estimated effects of climate/dust and early 

incidence observed at the national level persisted at the district level, and whether the size of the 

estimated effect differed from that observed at the national level. For climate/dust, we considered 

both large-scale (national-level) covariates and local (district-level) deviations from the large-
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scale  covariates,  i.e. the  difference  between the  district  level  and national  level  in the  models  

under consideration.   

We  considered three  model  categories  (based on early incidence, climate/dust,  and both). For 

each category, we  applied  the  corresponding selected national-level  model  to the  district-level  

count  data  and we  considered two additional  models  including district-level  covariates  to assess 

the  influence  of  including  district-level  information:  one  model  with a  universal  intercept  α, and 

one  with a  district-specific  intercept  αi  (for each district  i) to account  for unexplained district  

differences. We used  likelihood ratio tests  to determine  which covariates  to include  in the  models  

including district-level  covariates. In these  models, we  considered national-level  ln-transformed 

climate/dust  covariates  (Xkt), district-level  climate/dust  deviations  from  the  national  average  (Δ 

xkit) [(Δxkit= xkit  - Xkt) where xkit  is  the district-level ln-transformed climate/dust variable],  and  ln-

transformed early incidence  in December at  the  national  level  (Et)  and  at  the  district-level  (eit). 

As  additional  between-district  variability is  to be  expected (since  the  spatio-temporal  variability 

of  climate  in the  region is  lower than that  of  meningitis) we  considered additional  covariates  that  

may explain part  of  the  spatial  variability including  population density  (dit), whether the  district  

was classed as urban (1Ui) or rural  (1Ri) [where 1Ui  = 1 and 1Ri  = 0 if  the district is classified as 

urban and 1Ui  = 0 and 1Ri  = 1 if  the  district  is  classified as  rural],  and the  longitude  (loni) and 

latitude  (lati)  of  the  centroid of  the  district. We  also included the  ln-transformed average  early 

incidence  of  meningitis  in December over all  districts  adjacent  to each district  (referred to as  

neighboring districts) (  –eit) and the  ln-transformed population size ( Nit) as an offset.   
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With regards  to the  climate/dust  covariates, if  one  of  the  national  level  or the  district-level  

deviation  from  the  national  average  was  significant, we  retained both in the  model. Three 

districts were   classified as urban: Maradi, Niamey, and Zinder.     

We also evaluated the  performance  of  the  district-level  models  with respect  to detecting whether 

a particular incidence threshold  K  was exceeded using similar methods to those described for the 

national-level  models, with the  additional  calculation of  Positive  Predictive  Value  [PPV  = true  

positives  /  (true  positives  + false  positives)]  and Negative  Predictive  Value  [NPV  = true  

negatives  /  (true  negatives  + false  negatives)]. We  initially used a  threshold  of  100 per 100,000, 

and  we  then explored  the  dependence  of  the  results  on both the  incidence  threshold K  and the  

method of selecting the cutoff value  c.  

Results  

  National level 

Summary data for the national-level models is presented in Table 1. In applying the stepwise 

backwards model selection process, the final climate-only and climate-plus-early-incidence 

models contained a single climate variable, namely the average zonal wind during November 

through December (UNDt). The climate-plus-early-incidence model had pseudo-R2=0.57 and 

CVC=0.59. The fit of the model where the single climate variable was the average wind speed 

during November through December (UVNDt) or the average dust concentration during October 

through December (DustODt) was statistically indistinguishable from the model that included 

UNDt, consistent with the high correlations among these variables (Pearsons’s correlation 

coefficients 0.84-0.86). In contrast to Yaka et al. (2008), the meridional wind component (VNDt) 

model resulted in inferior scores. 
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Models  that  incorporated  both climate/dust  and early incidence  were  superior in fit  to both the  

early-incidence-only model, and the  climate-only models  (Table  1). Climate  and dust  had  a 

greater impact  on model  fit  than  early incidence,  as  shown by the  increases  in pseudo-R2  and 

CVC, and decreases  in AIC,  between the  climate-plus-early-incidence  models  and the  

corresponding models with early incidence or the climate component only.     

Figure  1  presents  the  cross-validated results  of  the  model  with both  average  zonal  wind during  

November  through December (UNDt)  and early incidence  (Et) as  covariates.  Using a  probability 

decision cutoff  c  of  0.42 and cross-validated predictions  ~ yt, four out  of  five  years  were  correctly 

predicted to have  exceeded 100 cases  per 100,000 over the  20-year period,  whereas  two of  the  

remaining fifteen years  were  incorrectly predicted to exceed  it  (SENS=0.80, SPEC=0.87, 

HKS=0.83).  The  model  captured the  maximum  incidence  in 1995, although the  magnitude  was  

underestimated. Figure  1  also includes  the  results  of  the  model  with average  dust  concentration 

during  October  through December (DustODt)  and early incidence  as  covariates. Using a  

probability decision cutoff  of  0.36 and cross-validated predictions  ~ y  
t,  four  out of  five years were 

correctly predicted to have  exceeded the  threshold,  whereas  one  of  the  remaining fifteen years  

were incorrectly predicted to exceed it  (SENS=0.80, SPEC=0.93, HKS=0.87).  

District level  

Table  2 presents  the  model  comparison and goodness-of-fit  statistics  for the  district-level  

models.  The  climate/dust  variables  selected for  inclusion in the  models  were  the  average  zonal  

wind (November–December) at  the  national  level  (UNDt), the  district-level  deviation of  the  zonal  

wind from  the  national-level  average  (ΔuNDit), the  average  wind speed (November–December) at  

the  national  level  (UVNDt), the  district-level  deviation of  the  wind speed from  national-level  
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average  (ΔuvNDit), the  average  dust  concentration (October–December) at  the  national  level  

(DustODt), and the  district-level  deviation  of  the  dust  concentration from  the  national-level  

average  (ΔdustODit).  The  inclusion of  both national  and district-level  covariates  (Table  2, models  

2, 5 and 8) as  opposed to using national-level  only (models  1, 4 and 7), resulted in a  statistically 

significant  (p<0.05) improvement  in the  fit  of  the  model. Although the  inclusion of  district-

specific  observed covariates  such as  population density and latitude  explained some  of  the  

between-district  variability,  there  were  still unexplained  differences  between the  districts  as 

indicated  by the  significant  improvements  made  in the  fit  of  the  models  when a  district-specific  

intercept  (αi) is  included (models  3, 6 and 9). Similarly to the  national-level  results,  both early 

incidence  (national, district  and averaged over neighbors) and wind and dust  information 

(national  and district) contributed to the  fit  of  the  model,  with wind and dust  information having 

the greater influence.   

Table  3 presents  SENS, SPEC, HKS, PPV  and NPV  for each of  the  models  with respect  to an 

incidence  threshold of  100 cases  per 100,000. The  best  model  with respect  to these  criteria  and 

AIC, pseudo-R2  and CVC (Table  2) is  model  9,  which includes  early incidence  (national, district-

level,  and average  of  neighbors) and climate  (national  and district-level  deviations  from  the  

national-level  zonal  wind and dust  concentration),  population density,  and a district-specific  

intercept. However,  this  model  represented only a  small  improvement  over  a  model  where  the  

district-specific  intercept  was  replaced by latitude  and November-December wind speed  

(national level and the district-level deviation from the national level) (Table 2, model 8).        

Table  4  includes  the  estimated coefficients  for model  9. Both  the  national-level  and district-level  

deviation coefficients  for zonal  wind and dust  concentration are  statistically significant, 
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indicating that  the  national  and district-level  data  make  independent  contributions  to the  fit  of  the  

model. A  positive  relationship was  observed between zonal  wind and meningitis  incidence,  

indicating that  stronger winds  from  an easterly direction  were  followed by  an increase  in cases.  

Despite  the  negative  coefficient  multiplying  the  district-level  deviation dust  covariate, the  overall  

effect  of  dust  [2.09*DustODt-1.36*(dustODit-DustODt)] is  never  to reduce  meningitis  incidence  

because  the  district-level  dust  concentration  is  never greater than roughly twice  the  national  

average  (note  that  we  refer to non ln-transformed values). This  negative  coefficient  means  that  

dustier districts  have  lower incidence  in this  model. However, the  incidence  variations  between  

districts  due  to dust  is  small  compared to the  estimated effect  of  the  national-level  dust  

concentration. The  negative  coefficient  may be  an artifact  of  uncertainties  in district-level  dust  

variations that are supplied by our climate model in the absence of direct measurements.  

Model  9 had  the  unusual  feature  that  district-level  seasonal  incidence  decreased  as  national-level  

early incidence  increases. (The  coefficient  of  Et  in Table  4 is  negative.)  However, the  coefficient  

is  not  statistically distinct  from  zero and its  influence  is  small  in practice, compared to the  

estimated effect  of  early incidence  in the  district  (eit)  and the  immediate  neighbors  ( e– it).  The  

negative  value  of  Et  may be  partly an artifact  of  our simple  model  that  does  not  distinguish 

between early incidence  within remote  districts  and districts  that  are  nearby but  not  neighboring 

(and whose  influence  is  not  included within e– it).  The  use  of  the  national  average  to represent  the  

influence  of  both these  districts  may be  too restrictive, resulting in the  counterintuitive  negative  

(but small) estimated ef fect of  Et.   

In Table  2 and Table  4 we  compared  the  results  of  model  9 with model  9N, based upon national-

level  covariates  only, and model  9D, constructed from  district-level  covariates  only.  (All  models  
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include  district-specific  intercepts.) These  additional  models  show  the  expected increase  of  

seasonal  incidence  with increasing wind, dust, early incidence  and population density.  In contrast  

to model  9, early incidence  at  the  national  level  is  associated positively with meningitis  

incidence  when district-level  deviation covariates  are  not  included (model  9N). In model  9D, the  

removal  of  national-level  early  incidence  only slightly weakened  the  influence  of  early incidence  

in adjacent  districts. The  comparison of  goodness-of-fit  among models  9, 9N  and 9D  in Table  2 

demonstrates  that  the  inclusion of  district-level  variables  provides  a  better fit  and that  the  

addition of the national-level data does little to improve predictions at district-level.  

Figure  2  shows  district-level  sensitivity  and specificity estimates  for model  7 (which includes  

early incidence  and zonal  wind at  the  national  level  only) and model  9. For  both models, 

sensitivity  was  rather heterogeneous  across  the  country, with model  predictions  for the  central  

southern districts  close  to the  border with Nigeria, where  population density is  highest, showing 

the  highest  sensitivity.  District-level  specificity  was  more  homogeneous  across  the  country, with 

model  9  estimates  showing greater specificity than model  7 estimates, except  in  some  of  the  

southern districts.  

Threshold-based model  evaluations  are  highly dependent  on the  selected threshold and the  

method to select  the  cutoff  value  c.  Typically the  threshold under consideration is  policy-driven, 

e.g. there  may be  a  particular threshold from  which certain actions  are  initiated.  For  seasonal  

meningitis  incidence  there  is  no  universally recognized  threshold to categorize  the  season to be  

either ‘normal’ or ‘high’. In the  above  analysis  we  used  a  threshold of  100 cases  per 100,000 (de  

Chabalier et  al. 2000). We  additionally explored the  dependence  of  our results  on this  threshold 

using a  range  between 50 and 300 cases  per 100,000 for which 35% and 5% of  district-seasons  
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crossed the  threshold,  respectively.  Figure  3  presents  plots  of  SENS, SPEC, PPV  and NPV  for 

four different  models  over this  range. Models  considered included a  model  with early incidence  

and zonal  wind at  925hPa  at  the  national  level  only (model  7);  a model  with both national  and 

district-level  early incidence, average  early incidence  averaged over  neighboring districts,  and a 

district-specific  intercept  (model  3);  a  model  with national  and district-level  zonal  wind and dust  

concentrations  and a district-specific  intercept  (model  6);  and a  model  with both national  and 

district-level  early incidence,  national  and district-level  zonal  wind and dust  concentrations, 

average  early incidence  in  neighboring districts, population density,  and a  district-specific  

intercept  (model  9). Models  6 and 9 generally outperformed the  other models  with regard to 

sensitivity  (around 0.7 for thresholds  between 50 and 170 per 100,000), PPV,  and NPV. With 

respect  to specificity, none  of  the  models  considered consistently outperformed the  other three. 

As  expected,  PPV  decreased and NPV  increased as  the  threshold increased  because, as  the  

number of  epidemics  decreased, the  number of  false  positive  and true  negative  predictions  

increased while true positive and false negative predictions decreased.  

When determining how  the  cutoff  value  c  is  selected, the  relative  importance  of  sensitivity, 

specificity, PPV  and NPV  needs  to be  considered with respect  to some  form  of  cost-benefit  

measure, e.g. is  it  feasible  to vaccinate  a  large  number of  people  unnecessarily if  it  means  that  a  

large  proportion of  cases  are  prevented?  We  performed additional  analyses  in which 

simultaneous  optimization of  sensitivity, specificity, PPV,  and NPV  was  the  criterion used  to 

select c  [i.e. the  value  of  c  that  minimized the  equation (1−SENS)2  + (1−SPEC)2  + (1−PPV)2  + 

(1−NPV)2  ], instead of  using optimization of  sensitivity  and specificity  only  (Table  5).  The  

method had no influence  on results  obtained for model  3. For results  obtained for model  6 and 

model  9 it  was  observed that  generally NPV  was  not  essentially affected by the  optimization 
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technique, specificity was  greater using the  alternative  optimization technique  whereas  

sensitivity and PPV  decreased and increased respectively by approximately equal  amounts. 

These  results  highlight  the  need to prioritize  these  parameters  for optimization according to the  

specific public health context when developing the model.  

Discussion  

At  the  national  level, both the  early incidence  and November-December averaged zonal  wind 

together provided the  best  fit  (pseudo-R2=0.57), with the  climate variable  having a  greater impact  

on the  fit. The  sensitivity  and specificity  of  this  national  model  to predict  epidemics  above  100 

cases  per 100,000 population were  0.8 and 0.87, respectively. A  national  model  with October-

December dust  concentration and early incidence  performed indistinguishably well  (pseudo-

R2=0.55, SENS=0.80, SPEC=0.93).  Our results  suggest  a  significant  influence  of  early-season 

conditions  upon the  initial  slope  and final  amplitude  of  the  incidence  of  meningitis  during 

epidemics  in the  study area.  Indeed, de  Chabalier et  al. (2000)  showed  that  epidemics  which 

occurred early in the  meningitis  season  in Niger  were  characterized by a  more  rapid increase  and  

higher seasonal peaks  in the  incidence  of  meningitis.  In our study, wind and dust  conditions  

during  the  period January to March did not  correlate  with seasonal  incidence  (data  not  shown). 

Therefore, with this  approach, forecasting seasonal  incidence  (January-May) could  be  based on 

observed  early-season climate/dust  information  (November-December)  and would not  rely upon 

uncertain seasonal climate forecasts.  

At  the  district  level, early-season zonal  wind and dust  (i.e., in November–December), along with 

the  early incidence  in December and the  district  population density,  represented the  spatio-

temporal  variability of  the  disease  with pseudo-R2=0.41 and CVC=0.55.  The  inclusion of  zonal  
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wind and dust  information substantially increased our ability to  predict  which districts  would 

exceed a  particular incidence  threshold,  as it increased  model  sensitivity and/or PPV  depending 

on optimization criteria. District  specific  intercepts  also improved model  performance  by 

accounting for between-district variability that was not explained by other model covariates  .  

The  use  of  suspected cases  instead of  confirmed cases,  and the  lack of  historical  vaccination data  

are  limitations  of  current  modeling and forecasting approaches, including our study. Our  model  

uses  early incidence  as  a  proxy measure  of  population susceptibility and/or carriage  prevalence. 

Although this  may at  least  partially account  for vaccination in preceding years, the  incidence  

reported in a  given  district  may have  been  affected by the  reactive  vaccination within the  same 

season.  Following the  outbreaks  of  meningitis  in 1995-1996 in West  Africa, an International  

Coordinating Group (ICG) on Vaccine  Provision for Epidemic  Meningitis  Control  was  

established in January 1997 to coordinate  the  best  use  of  the  limited amount  of  vaccine  available  

and to ensure  a  better distribution of  the  meningitis  vaccine.  Therefore, the  extent  to which 

reactive  vaccination affected  the  dynamics  of  the  disease  is  uncertain.  Future  modeling studies  

may attempt  to reconstruct  immunity patterns  (natural  and vaccination-induced) from  data  on 

cases, population size  and climate  seasonality and interannual  variability.  The  use  of  more  

complex mechanistic  models  that  account  for the  non-linear interaction between climate  and 

susceptibility,  together with the  availability of  new  data  on carriage  rates, vaccination coverage,  

and respiratory viral  infections,  are  expected to enhance  our understanding of  the  epidemics  and 

eventually serve as more precise prediction tools.    

The  accuracy of  our models  to predict  epidemics  after the  introduction of  conjugate  A  vaccine  in 

2010  (LaForce  et  al. 2007)  must  be  tested  due  to the  possible  near future  elimination of  large  
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epidemics  of  serogroup A. However, meningitis  is  likely to continue  to be  a  problem  within the  

belt  due  to the  length of  time  it  will  take  to vaccinate  the  entire  at-risk population, and  the  

potential  emergence  of  other serogroups  such as  W135 and X. Further, a  forecasting system  

based on pre-conjugate  vaccination data  could be  used retrospectively to disentangle  the  

confounding effect  of  climate  in the  assessment  of  the  impact  of  the  new  vaccine  on carriage  and 

incidence.  

Conclusions  

We demonstrated the potential and limitations of using early-season wind and soil dust 

information to predict meningitis epidemics in Niger based on data from 1986 to 2006. Precise 

predictions of epidemics cannot be solely based on climate data and coarse proxies of 

susceptibility. However, our model (if amended to account for the introduction of conjugate A 

vaccine) could lead to an early-season alert that climate and other conditions are potentially 

conducive to an epidemic, which could initiate an early response strategy including increased 

surveillance, ensuring that stocks of vaccines are in-country, that protocols and procedures are in 

place and that district health teams and members of the public likely to be affected are 

forewarned and prepared. If the presence of the pathogen or an increase in incidence is 

subsequently confirmed based on surveillance systems at district or finer levels (Paireau et al. 

2012; Tall et al. 2012), early warnings could be followed by additional actions as needed. 
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Table 1.  Model comparison and goodness-of-fit summaries for national-level negative binomial   

models fitted to the ln-incidence count data over the period 1987-2006.   

Model AIC Pseudo-R2 CVC SENS SPEC HKS 
Et 395 0.24 0.38 0.40 1.00 0.70 
UNDt * 387 0.49 0.51 1.00 0.60 0.80 
UNDt + Et * 385 0.57 0.59 0.80 0.87 0.83 
UVNDt 388 0.47 0.51 1.00 0.53 0.77 
UVNDt + Et 385 0.57 0.60 0.80 0.80 0.80 
DustODt 388 0.47 0.46 1.00 0.60 0.80 
DustODt + Et 386 0.55 0.56 0.80 0.93 0.87 
VNDt 394 0.29 0.34 0.60 0.53 0.57 
VNDt + Et 392 0.42 0.48 0.60 0.87 0.73 

Abbreviations: Et is the ln-transformed early incidence in December; UNDt, VNDt, and UVNDt represent ln-

transformed average values during November–December for zonal wind (m/s), meridional wind (m/s) and 

wind speed (m/s) at 925 hPA; DustODt, is the ln-transformed average dust concentration during October– 

December (µg/m3); AIC, Akaike’s Information Criterion; SENS, sensitivity; SPEC, specificity; HKS, 

scaled Hanssen and Kuipers score; CVC, Pearson’s correlation between the observed data and the 

resulting cross-validated predictions on the ln-incidence scale. The asterisk indicates the models selected 

during the model selection process. SENS, SPEC and HKS were calculated using a threshold of 100 cases 

per 100,000. 
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Table 2.  Model comparison and goodness-of-fit summaries of the district-level negative     

binomial models fitted to the ln-incidence count data over the period 1987-2006.    

Model Covariates AIC pseudo-R2 CVC 
1 Et 8594 0.10 0.17 
2 Et, eit, 

– eit, 1Ui, 1Ri, dit, lati 8478 0.21 0.43 

3 Et, eit, 
– eit, αi 8478 0.24 0.42 

4 UNDt 8531 0.16 0.25 
5 UNDt, ΔuNDit, DustODt, ΔdustODit, dit, lati 8421 0.26 0.41 

6 UNDt, ΔuNDit, DustODt, ΔdustODit, dit, αi 8369 0.34 0.44 
7 Et, UNDt 8499 0.19 0.28 
8 Et, eit, 

– eit, UNDt, ΔuNDit, UVNDt, ΔuvNDit, DustODt,ΔdustODit, dit, lati 8303 0.36 0.52 

9 Et, eit, 
– eit, UNDt, ΔuNDit, DustODt, ΔdustODit, dit, αi 8275 0.41 0.55 

9N Et, UNDt, DustODt, dit, αi 7994 0.32 0.46 
9D eit, 

– eit, uNDit, dustODit, dit, αi 7898 0.40 0.56 

Abbreviations: Et, eit and –eit represent ln-transformed early incidence in December at national level, 

district level and averaged over neighboring districts (cases per 100,000); 1Ui and 1Ri are urban and rural 

district indicators; dit is the district population density; lati is the district latitude; αi is a district-specific 

intercept; UNDt and UVNDt, represent ln-transformed average values at national level during November– 

December for zonal wind (m/s) and wind speed (m/s) at 925 hPa; DustODt is the ln-transformed average 

dust concentration at national level during October–December (µg/m3); ΔuNDit, ΔuvNDit andΔdustODit 

represent the differences in the ln-transformed district-level zonal wind (m/s), wind speed (m/s) and dust 

concentration (µg/m3) compared with the ln-transformed national-level averages; uNDt represents ln-

transformed average zonal wind (m/s) values at district level during November–December; dustODt is the 

ln-transformed average dust concentration at district level during October–December (µg/m3); AIC, 

Akaike’s Information Criterion; CVC, Pearson’s correlation between the observed data and the resulting 

cross-validated predictions on the ln-incidence scale. Models 1 to 3 are based on early incidence. Models 

4 to 6 based on climate/dust covariates. Models 7 to 9 are based on early incidence and climate/dust 

covariates. Models 9N and 9D are similar to model 9 but with national-level covariates only (model 9N) 

and with district-level covariates only (model 9D) [both 9N and 9D also include district-specific 

intercepts]. 
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Table 3. Threshold-based results obtained for a range of district-level models produced using a 

threshold of 100 cases per 100,000 and using both sensitivity (SENS) and specificity (SPEC) to 

select the cutoff value c. 

Modela SENS SPEC HKS PPV NPV 
1 0.5970 0.6451 0.6211 0.2778 0.8750 
2 0.6119 0.6843 0.6481 0.3071 0.8852 
3 0.5448 0.7457 0.6423 0.3288 0.8775 
4 0.7015 0.5461 0.6238 0.2611 0.8889 
5 0.7164 0.5973 0.6569 0.2892 0.9021 
6 0.7090 0.6263 0.6677 0.3025 0.9039 
7 0.6045 0.7082 0.6564 0.3214 0.8868 
8 0.6493 0.7287 0.6890 0.3537 0.9008 
9 0.6791 0.7218 0.7005 0.3583 0.9077 
aModel numbers correspond to the models listed in Table 2. 
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Table 4. Estimated coefficients, 95% confidence intervals and p-values obtained by fitting model 9, model 

9N and model 9D. 

Variablea Model 9 
Estimate (95% CI) 

p-value Model 9N 
Estimate (95% CI) 

p-value Model 9D 
Estimate (95% CI) 

p-value 

UNDt 1.94 (0.79, 3.11) 0.0003 2.40 (1.19, 3.62) <0.0001 
ΔuNDit 4.31 (2.94, 5.67) <0.0001 
uNDit 3.19 (2.44, 3.93) <0.0001111 
DustODt 2.09 (1.18, 2.98) <0.0001 1.26 (0.34, 2.16) 0.0016 
ΔdustODit -1.36 (-2.48,-0.27) 0.0051 
dustODit 0.51 (-0.02, 1.02) 0.0298 
Et -0.18 (-0.37, 0.01) 0.0330 0.40 (0.23, 0.57) <0.0001 
eit 0.23 (0.13, 0.32) <0.0001 0.21 (0.12, 0.32) <0.0001111 
– eit 0.38 (0.24, 0.51) <0.0001 0.33 (0.21, 0.45) <0.0001111 

dit 2.00 (1.43, 2.57) <0.0001 1.54 (0.95, 2.13) <0.0001 2.05 (1.46, 2.62) <0.0001111 
aVariables are described in Table 2.
 

Models 9N and 9D are similar to model 9 but with national-level covariates only (model 9N) and with district-level 


covariates only (model 9D) [Note that both 9N and 9D also include district-specific intercepts].
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Table 5. Threshold-based summaries obtained using a threshold of 100 cases per 100,000 and 

using either SENS and SPEC only or SENS, SPEC, PPV and NPV to optimize the decision 

cutoff c. 

Model Optimization criteria SENS SPEC HKS PPV NPV 
3 SENS, SPEC 0.5448 0.7457 0.6453 0.3288 0.8775 
3 SENS, SPEC, PPV, NPV 0.5448 0.7457 0.6453 0.3288 0.8775 
6 SENS, SPEC 0.7090 0.6263 0.6677 0.3025 0.9039 
6 SENS, SPEC, PPV, NPV 0.3433 0.9283 0.6358 0.5227 0.8608 
9 SENS, SPEC 0.6791 0.7218 0.7005 0.3583 0.9077 
9 SENS, SPEC, PPV, NPV 0.5672 0.8584 0.7128 0.4780 0.8966 
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Figure legends  

Figure 1.   Observed national incidence (solid black line) and cross-validated national incidence  

predictions (points), plus 95% confidence limits obtained by fitting a negative binomial model to 

the national count data, using November-December zonal wind (925 hPa) and December 

incidence as predictors (top figure), and using October-December dust concentration and  

December incidence as predictors (bottom figure). Closed circles denote those predictions that  

were correctly assigned to be either above or below 100 cases per 100,000, whereas  open circles  

are incorrect predictions. Decision cutoff values  c  of 0.42 (top) and 0.36 (bottom) were used.  

Figure 2.   Maps of sensitivity and specificity based on predictions from a mode l that includes  

zonal wind and December incidence at national  level (Model 7, as defined in Table 2) (left) and a   

model with zonal wind, dust and December incidence at the national and district  levels, average  

December incidence of neighboring districts, population density, and a district-specific intercept   

(Model 9, as defined in Table 2) (right). A threshold of 100 cases per 100,000 was used, and the   

value of  c  was selected as the value that simultaneously optimized both sensitivity and  

specificity.  

Figure 3.  Plot of sensitivity, specificity, positive predictive value (PPV) and negative predictive  

value (NPV) against the epidemic incidence threshold (in cases per 100,000) for model 7, model      

3, model 6 and model 9. (See Table 2 for variables included in the numbered models.)   
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Figure 1.  
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Figure 2.   

32
 



  

 

Figure 3.  

33
 


	Title
	Abstract
	Introduction
	Data and methods
	Results
	Discussion
	Conclusions
	References
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Figure legends
	Figure 1.
	Figure 2.
	Figure 3.



